Equilibrium Constant - Practice Problems for Assignment 5

1. Consider the following reaction

 $2 \text{ SO}_2(g) + \text{O}_2(g) = 2 \text{ SO}_3(g)$

Write the equilibrium expression, K_c.

2. Consider the following reaction

 $CaCO_3(s) = CaO(s) + O_2(g)$

Write the equilibrium expression, K_c.

3. Consider the following reaction

 $2 \text{ SO}_2(g) + \text{O}_2(g) = 2 \text{ SO}_3(g)$

Write the equilibrium expression, K_p.

4. Consider the following reaction

 $H_2O(g) + C(s) = H_2(g) + CO(g)$

Write the equilibrium expression, K_p.

5. Consider the decomposition of nitrous oxide, laughing gas,

 $2N_2O(g) = 2 N_2(g) + O_2(g)$

At 25°C, K_c is 7.3 x 10³⁴.

- (a) Based on the information given, what can you say about the rate of decomposition of the reaction?
- (b) Based on the information given, does nitrous oxide have a tendency to decompose into nitrogen and oxygen?
- (c) What is the value of K_p for the reaction at 25°C?
- 6. Consider the following reaction

 $CO_{2}(g) + H_{2}(g) = CO(g) + H_{2}O(g)$

Calculate the value of the equilibrium constant, K_c , for the above system, if 0.1908 moles of CO₂, 0.0908 moles of H₂, 0.0092 moles of CO, and 0.0092 moles of H₂O vapour were present in a 2.00 L reaction vessel at equilibrium.

7. Consider the following reaction

 $C_2H_4(g) + H_2(g) = C_2H_6(g)$ $K_c = 0.99$

What is the concentration for each substance at equilibrium if the initial concentration of ethene, C_2H_4 (g), is 0.335 M and that of hydrogen is 0.526 M?

8. Consider the following reaction

 $2 \text{ NO}(g) + 2 \text{ H}_2(g) = N_2(g) + 2 \text{ H}_2\text{O}(g)$

Determine the value of the equilibrium constant, K_c , for the reaction. Initially, a mixture of 0.100 M NO, 0.050 M H₂, 0.100 M H₂O was allowed to reach equilibrium (initially there was no N₂). At equilibrium the concentration of NO was found to be 0.062 M.

9. Consider the following reaction

 $N_2O_4(g) = 2 NO_2(g)$

A reaction flask is charged with 3.00 atm of dinitrogen tetroxide gas and 2.00 atm of nitrogen dioxide gas. At 25°C, the gases are allowed to reach equilibrium. The pressure of the nitrogen dioxide was found to have decreased by 0.952 atm. Estimate the value of K_p for this system.

10. Consider the following reaction. The initial concentrations are $[HSO_4^-] = 0.50 \text{ M}$, $[H_3O^+] = 0.020 \text{ M}$, $[SO_4^{2^-}] = 0.060 \text{ M}$.

$$HSO_4^{-}(aq) + H_2O(1) = H_3O^{+}(aq) + SO_4^{2-}(aq)$$
 $K = 0.012$

- (a) Which way would the reaction shift to reach equilibrium?
- (b) What are the equilibrium concentrations of the products and reactants.

Answers:

1.
$$K_c = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$$

2. $K_c = [O_2]$

3.
$$K_p = \frac{p_{SO_3}^2}{p_{SO_2}^2 p_{O_2}}$$

4.
$$K_p = \frac{p_{H_2} p_{CO}}{p_{H_2O}}$$

- 5. (a) Based on the information given, you cannot predict the rate of decomposition of nitrous oxide.
 - (b) From the value of the K_{eq} , nitrous oxide has a strong tendency to decompose into nitrogen and oxygen. (c) $K_p = 1.8 \times 10^{36}$
- 6. $[CO_2] = 0.1908 \text{ mol } CO_2/2.00 \text{ L} = 0.0954 \text{ M}$ [H₂] = 0.0454 M [CO] = 0.0046 M $[H_2O] = 0.0046 M$

$$K = \frac{(0.0046)(0.0046)}{(0.0954)(0.0454)} = 0.0049 \text{ or } 4.9 \text{ x } 10^{-3}$$

7.

	C_2H_4	H_2	C_2H_6
[I]	0.335	0.526	0
[C]	-X	-X	+x
[E]	0.335 -x	0.526 -x	$+\mathbf{x}$

K =
$$\frac{x}{(0.335 - x)(0.526 - x)} = 0.0995 \text{ or } \frac{1.77}{1.77}*$$

* x=1.77 is not possible because the concentration of C_2H_4 will result in a negative value.

$$\label{eq:c2H4} \begin{split} & [C_2H_4] = 0.236 \ M \\ & [H_2] = 0.526 - x = 0.526 - 0.0995 = 0.427 \ M \\ & [C_2H_6] = 0.0995 \ M \end{split}$$

8.

	NO	H_2	N ₂	H ₂ O
[I]	0.100	0.0500	0	0.100
[C]	-2x	-2x	+x	+2x
[E]	0.062			
From ICE table	2x = 0.038			

Therefore, substitute for x and calculate [E] for each species:

	NO	H_2	N_2	H ₂ O
[I]	0.100	0.0500	0	0.100
[C]	- 0.038	- 0.038	+0.019	+0.038
[E]	0.062	0.012	0.019	0.138

$$K = \frac{(0.019)(0.138)^2}{(0.062)^2(0.012)^2} = 6.5 \times 10^2$$

9.

	N_2O_4	NO ₂
[I]	3.00	2.00
[C]	+x	-2x = -0.952
[E]		
From ICE table	x = 0.952/2	

Therefore, substitute for x and calculate [E] for each species:

	N_2O_4	NO ₂
[I]	3.00	2.00
[C]	+0.476	-0.952
[E]	3.476	1.048

$$\mathbf{K} = \frac{(1.048)^2}{(3.476)} = 0.316$$

10. (a) Use the trial K_{eq} , Q, to determine the reaction direction.

$$Q = \frac{(0.020)(0.060)}{(0.50)} = 0.0024$$

 $Q < K_{eq}$, therefore, equilibrium will shift to the right to produce more products.

(b)

	$\mathrm{HSO_4}^-$	H_3O^+	$\mathrm{SO_4}^{2-}$
[I]	0.50	0.020	0.060
[C]	-X	+x	+x
[E]	0.50 -x	0.020+x	0.060+x

$$K = \frac{(0.020 + x)(0.060 + x)}{(0.050 - x)}$$

To solve, need to use the quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

x = 0.0372 or -0.129 *

For x = 0.0372,

$$[HSO_4^-] = 0.46 \text{ M}; [H_3O^+] = 0.057 \text{ M}; [SO_4^{2-}] = 0.097 \text{ M}$$

* For
$$x = -0.129$$

 $[HSO_4^-] = 0.63 \text{ M}; [H_3O^+] = -0.109 \text{ M}; [SO_4^{2-}] = -0.069 \text{ M}$ it yields negative concentrations.

Therefore, the correct equilibrium concentrations are: $[HSO_4^-] = 0.46 \text{ M}; [H_3O^+] = 0.057 \text{ M}; [SO_4^{2-}] = 0.097 \text{ M}$