Equilibrium Constant

- Practice Problems for Assignment 5

1. Consider the following reaction

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Write the equilibrium expression, K_{c}.
2. Consider the following reaction

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

Write the equilibrium expression, K_{c}.
3. Consider the following reaction

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Write the equilibrium expression, K_{p}.
4. Consider the following reaction

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{C}(\mathrm{~s}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

Write the equilibrium expression, K_{p}.
5. Consider the decomposition of nitrous oxide, laughing gas,

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}$ is 7.3×10^{34}.
(a) Based on the information given, what can you say about the rate of decomposition of the reaction?
(b) Based on the information given, does nitrous oxide have a tendency to decompose into nitrogen and oxygen?
(c) What is the value of K_{p} for the reaction at $25^{\circ} \mathrm{C}$?
6. Consider the following reaction

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Calculate the value of the equilibrium constant, K_{c}, for the above system, if 0.1908 moles of $\mathrm{CO}_{2}, 0.0908$ moles of $\mathrm{H}_{2}, 0.0092$ moles of CO , and 0.0092 moles of $\mathrm{H}_{2} \mathrm{O}$ vapour were present in a 2.00 L reaction vessel at equilibrium.
7. Consider the following reaction

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=0.99
$$

What is the concentration for each substance at equilibrium if the initial concentration of ethene, $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$, is 0.335 M and that of hydrogen is 0.526 M ?
8. Consider the following reaction

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Determine the value of the equilibrium constant, K_{c}, for the reaction. Initially, a mixture of $0.100 \mathrm{M} \mathrm{NO}, 0.050 \mathrm{M} \mathrm{H}_{2}, 0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ was allowed to reach equilibrium (initially there was no N_{2}). At equilibrium the concentration of NO was found to be 0.062 M .
9. Consider the following reaction

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A reaction flask is charged with 3.00 atm of dinitrogen tetroxide gas and 2.00 atm of nitrogen dioxide gas. At $25^{\circ} \mathrm{C}$, the gases are allowed to reach equilibrium. The pressure of the nitrogen dioxide was found to have decreased by 0.952 atm .
Estimate the value of K_{p} for this system.
10. Consider the following reaction. The initial concentrations are $\left[\mathrm{HSO}_{4}{ }^{-}\right]=0.50 \mathrm{M}$, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.020 \mathrm{M},\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.060 \mathrm{M}$.

$$
\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \quad \mathrm{K}=0.012
$$

(a) Which way would the reaction shift to reach equilibrium?
(b) What are the equilibrium concentrations of the products and reactants.

Answers:

1. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
2. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{O}_{2}\right]$
3. $\mathrm{K}_{\mathrm{p}}=\frac{p_{\mathrm{SO}_{3}}{ }^{2}}{p_{\mathrm{SO}_{2}}{ }^{2} p_{\mathrm{O}_{2}}}$
4. $\mathrm{K}_{\mathrm{p}}=\frac{p_{\mathrm{H}_{2}} p_{\mathrm{CO}}}{p_{\mathrm{H}_{2} \mathrm{O}}}$
5. (a) Based on the information given, you cannot predict the rate of decomposition of nitrous oxide.
(b) From the value of the K_{eq}, nitrous oxide has a strong tendency to decompose into nitrogen and oxygen.
(c) $\mathrm{K}_{\mathrm{p}}=1.8 \times 10^{36}$
6. $\left[\mathrm{CO}_{2}\right]=0.1908 \mathrm{~mol} \mathrm{CO}_{2} / 2.00 \mathrm{~L}=0.0954 \mathrm{M}$
$\left[\mathrm{H}_{2}\right]=0.0454 \mathrm{M}$
$[\mathrm{CO}]=0.0046 \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]=0.0046 \mathrm{M}$
$K=\frac{(0.0046)(0.0046)}{(0.0954)(0.0454)}=0.0049$ or 4.9×10^{-3}
7.

	$\mathrm{C}_{2} \mathrm{H}_{4}$	H_{2}	$\mathrm{C}_{2} \mathrm{H}_{6}$
$[\mathrm{I}]$	0.335	0.526	0
$[\mathrm{C}]$	$-x$	$-x$	$+x$
$[\mathrm{E}]$	$0.335-\mathrm{x}$	$0.526-\mathrm{x}$	+x

$$
K=\frac{x}{(0.335-x)(0.526-x)}=0.0995 \text { or } 1.77^{*}
$$

* $x=1.77$ is not possible because the concentration of $\mathrm{C}_{2} \mathrm{H}_{4}$ will result in a negative value.

$$
\begin{aligned}
& {\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]=0.236 \mathrm{M}} \\
& {\left[\mathrm{H}_{2}\right]=0.526-\mathrm{x}=0.526-0.0995=0.427 \mathrm{M}} \\
& {\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]=0.0995 \mathrm{M}}
\end{aligned}
$$

8.

	NO	H_{2}	$\mathrm{~N}_{2}$	$\mathrm{H}_{2} \mathrm{O}$
$[\mathrm{I}]$	0.100	0.0500	0	0.100
$[\mathrm{C}]$	-2 x	-2 x	+x	+2 x
$[\mathrm{E}]$	0.062			
From ICE table	$2 \mathrm{x}=0.038$			

Therefore, substitute for x and calculate [E] for each species:

	NO	H_{2}	$\mathrm{~N}_{2}$	$\mathrm{H}_{2} \mathrm{O}$
$[\mathrm{I}]$	0.100	0.0500	0	0.100
$[\mathrm{C}]$	-0.038	-0.038	+0.019	+0.038
$[\mathrm{E}]$	0.062	0.012	0.019	0.138

$$
K=\frac{(0.019)(0.138)^{2}}{(0.062)^{2}(0.012)^{2}}=6.5 \times 10^{2}
$$

9.

	$\mathrm{N}_{2} \mathrm{O}_{4}$	NO_{2}
$[\mathrm{I}]$	3.00	2.00
$[\mathrm{C}]$	+x	$-2 \mathrm{x}=-0.952$
$[\mathrm{E}]$	$\mathrm{x}=0.952 / 2$	
From ICE table		

Therefore, substitute for x and calculate [E] for each species:

	$\mathrm{N}_{2} \mathrm{O}_{4}$	NO_{2}
$[\mathrm{I}]$	3.00	2.00
$[\mathrm{C}]$	+0.476	-0.952
$[\mathrm{E}]$	3.476	1.048

$$
K=\frac{(1.048)^{2}}{(3.476)}=0.316
$$

10. (a) Use the trial K_{eq}, Q , to determine the reaction direction.

$$
\mathrm{Q}=\frac{(0.020)(0.060)}{(0.50)}=0.0024
$$

$\mathrm{Q}<\mathrm{K}_{\mathrm{eq}}$, therefore, equilibrium will shift to the right to produce more products.
(b)

	$\mathrm{HSO}_{4}{ }^{-}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{SO}_{4}{ }^{2-}$
$[\mathrm{I}]$	0.50	0.020	0.060
$[\mathrm{C}]$	$-x$	$+x$	+x
$[\mathrm{E}]$	$0.50-\mathrm{x}$	$0.020+\mathrm{x}$	$0.060+\mathrm{x}$

$$
K=\frac{(0.020+x)(0.060+x)}{(0.050-x)}
$$

To solve, need to use the quadratic equation

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$\mathrm{x}=0.0372$ or -0.129 *
For $\mathrm{x}=0.0372$,
$\left[\mathrm{HSO}_{4}{ }^{-}\right]=0.46 \mathrm{M} ;\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.057 \mathrm{M} ;\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.097 \mathrm{M}$

* For $\mathrm{x}=-0.129$,
$\left[\mathrm{HSO}_{4}{ }^{-}\right]=0.63 \mathrm{M} ;\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-0.109 \mathrm{M} ;\left[\mathrm{SO}_{4}{ }^{2-}\right]=-0.069 \mathrm{M}$ it yields negative concentrations.

Therefore, the correct equilibrium concentrations are:
$\left[\mathrm{HSO}_{4}{ }^{-}\right]=0.46 \mathrm{M} ;\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.057 \mathrm{M} ;\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.097 \mathrm{M}$

