\qquad
K_{a} formula $=$
A weak acid doesn't \qquad completely.

1) Write the equation for the dissociation for each acid. Then write the K_{a} formula:
a) Acetic Acid
b) hydrocyanic acid (HCN)
c) Iodic Acid $\left(\mathrm{HIO}_{3}\right)$
2) Without doing any math, match up these K_{a} values (not in order) with the acid solutions below: $\mathrm{K}_{\mathrm{as}}=1.7 \times 10^{-1}, \quad 6.8 \times 10^{-4}, \quad 1.8 \times 10^{-5}, \quad 4.9 \times 10^{-10}, \quad$ very large

A 0.10 M soln of HCl with a pH of 1.00
A 0.10 M soln of acetic acid with a pH of 2.87 \qquad
A 0.10 M soln of hydrocyanic acid with a pH of 5.1 \qquad
A 0.10 M soln of iodic acid with a pH of 1.15 \qquad
A 0.10 M soln of HF with a pH of 2.10 \qquad
3) Determine the K_{a} for HClO if a flask contains HClO at a concentration of 0.10 M , while the hydronium concentration is 5.5×10^{-5}.

Show K_{a} formula with species filled in:

Calculate K_{a} :

4) You have a 0.50 M solution of HNO_{2} (nitrous acid $\mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-4}$). Find the pH . You may use the denominator shortcut.
5) You have a solution of 0.10 M HF . Find the pH .
6) You have a solution of formic acid (HCOOH) with a pH of 2.38 . Find the molarity of the acid (HCOOH).
7) Vinegar, or a dilute solution of $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid), should have a molarity of around 0.83 M . Using the K_{a} for acetic acid, what should the pH of vinegar be?
8) You have a solution of boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ with a pH of 4.5 . Find the molarity of the boric acid.
9) a) Draw the non-ionized and ionized Lewis structures of Benzoic acid ($\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$:

Non-lonized:
Ionized:
b) If you have a 0.25 M solution of benzoic acid, what will the pH be?

