1) The acid dissociation constant (K_a) for benzoic acid is 6.3 x 10⁻⁵. Find the pH of a 0.35 M solution of benzoic acid.

2) Find the pH of a 0.275 M hypochlorous acid solution. $K_a = 3.0 \times 10^{-8}$.

3) Find the pH of a solution that contains 0.0925 M nitrous acid ($K_a = 4.5 \times 10^{-4}$) and 0.139 M acetic acid ($K_a = 1.8 \times 10^{-5}$).

	HC ₇ H ₃ O	_{2(aq)}	$aq)$ + $C_7H_3O_2^{-}$		
initial	0.35 M	0 M	0 M		
change	- x M	+ x M	+x M		
equilibrium	(0.35 – x) M	хM	хM		
Note that: $(0.35 - x) M \approx 0.35 M$ so $K_a = \frac{[H^+][C_7H_3O_2]}{[HC_7H_3O_2]} = \frac{(x)(x)}{(0.35 - x)} = \frac{(x)(x)}{(0.35)} = \frac{x^2}{(0.35)} = 6.3 \times 10^{-5}$					
$x^{2} = (6.3 \times 10^{-5}) (0.35) = 2.205 \times 10^{-5}$ x = 4.7 x 10 ⁻³ M x = moles/L formed					
pH = - log (4.	7 x 10 ⁻³) = 2.33				

_		HCIO	(aq) 🖺			
	initial	0.275 M	0			
	change	- x M	+ :			
	equilibrium	(0.275 – x) M	х			
-	Note that: (0.275 – x) M \approx 0.275 M so					

 $K_{a} = \frac{[H^{+}][ClO^{-}]}{[HClO]} = \frac{(x)(x)}{(0.275 - x)} = \frac{(x)(x)}{(0.275)} = \frac{x^{2}}{(0.275)} = 3.0 \times 10^{-8}$ $x^{2} = (3.0 \times 10^{-8}) (0.275) = 8.25 \times 10^{-9}$ $x = 9.08 \times 10^{-5} M$ $pH = -\log (9.08 \times 10^{-5}) = 4.042$

H⁺(aq)

⇆

0 M

<u>+ x M</u> x M + CIO⁻(aq)

0 M

+x M

хМ

3) First the amount of H⁺ from each acid must be calculated.

	HNO ₂₍₂	aq) 🕁 I	$H^+_{(aq)}$	+ NO _{2 (aq)}
initial	0.0925 M	0 M		0 M
change	- x M	+ x M		+x M
equilibrium	(0.0925 – x) M	хM		хM

Note that: $(0.0925 - x) M \approx 0.0925 M$ so

$$K_{a} = \frac{[H^{+}][NO_{2}^{-}]}{[HNO_{2}]} = \frac{(x)(x)}{(0.0925 - x)} = \frac{(x)(x)}{(0.0925)} = \frac{x^{2}}{(0.0925)} = 4.5 \times 10^{-4}$$

 $x^{2} = (4.5 \times 10^{-4}) (0.0925) = 4.1625 \times 10^{-5}$ x = 6.45 x 10⁻³ M x = moles/L formed

	HC ₂ H ₃ O _{2(ag)} 与	: H ⁺ _(aq) +	$C_2H_3O_2(aq)$
initial	0.139 M	0 M	0 M
change	- x M	+ x M	+x M
equilibrium	(0.139 – x) M	хM	хM

Note that: $(0.139 - x) M \approx 0.139 M$ so $K_a = \frac{[H^+][C_2H_3O_2^-]}{[H C_2H_3O_2]} = \frac{(x)(x)}{(0.139 - x)} = \frac{(x)(x)}{(0.139)} = \frac{x^2}{(0.139)} = 1.8 \times 10^{-5}$ $x^2 = (1.8 \times 10^{-5}) (0.139) = 2.502 \times 10^{-6}$ $x = 1.58 \times 10^{-3} M$

Then add the results together and use that value to find the pH.

$$6.45 \times 10^{-3} \text{ M} + 1.58 \times 10^{-3} \text{ M} = 8.03 \times 10^{-3} \text{ M}$$

 $pH = -\log(8.03 \times 10^{-3}) = 2.095$

1)

2)