1) The acid dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ for benzoic acid is 6.3×10^{-5}. Find the pH of a 0.35 M solution of benzoic acid.
2) Find the pH of a 0.275 M hypochlorous acid solution. $\mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8}$.
3) Find the pH of a solution that contains 0.0925 M nitrous acid $\left(\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-4}\right)$ and 0.139 M acetic acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$.
4)

	$\mathrm{HC}_{7} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})}$		+ C
initial	0.35 M	0 M	0 M
change	-x M	+ \times M	+x M
equilibrium	(0.35-x) M	x M	x M

Note that: $(0.35-x) M \approx 0.35$ M so
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\frac{(x)(x)}{(0.35-x)}=\frac{(x)(x)}{(0.35)}=\frac{x^{2}}{(0.35)}=6.3 \times 10^{-5}$
$\mathrm{x}^{2}=\left(6.3 \times 10^{-5}\right)(0.35)=2.205 \times 10^{-5}$
$x=4.7 \times 10^{-3} \mathrm{M} \quad \mathrm{x}=$ moles $/ \mathrm{L}$ formed
$\mathrm{pH}=-\log \left(4.7 \times 10^{-3}\right)=2.33$
2)

Note that: $(0.275-x) M \approx 0.275 \mathrm{M}$ so
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HClO}]}=\frac{(x)(x)}{(0.275-x)}=\frac{(x)(x)}{(0.275)}=\frac{x^{2}}{(0.275)}=3.0 \times 10^{-8}$
$\mathrm{x}^{2}=\left(3.0 \times 10^{-8}\right)(0.275)=8.25 \times 10^{-9}$
$\mathrm{x}=9.08 \times 10^{-5} \mathrm{M}$
$\mathrm{pH}=-\log \left(9.08 \times 10^{-5}\right)=4.042$
3) First the amount of \mathbf{H}^{+}from each acid must be calculated.

$\mathbf{H N O}_{2(\text { (aq) }} \quad \leftrightarrows$			
initial	0.0925 M	0 M	0 M
change	-x M	+ \mathbf{x} M	+x M
equilibrium	(0.0925-x) M	x M	\mathbf{x} M

Note that: $(0.0925-x) M \approx 0.0925$ M so
$K_{a}=\frac{\left[H^{+}\right]\left[\mathrm{NO}_{2}-\right]}{\left[\mathrm{HO}_{2}\right]}=\frac{(x)(x)}{(0.0925-x)}=\frac{(x)(x)}{(0.0925)}=\frac{x^{2}}{(0.0925)}=4.5 \times 10^{-4}$
$x^{2}=\left(4.5 \times 10^{-4}\right)(0.0925)=4.1625 \times 10^{-5}$
$\mathrm{x}=6.45 \times 10^{-3} \mathrm{M} \quad \mathrm{x}=$ moles $/ \mathrm{L}$ formed

	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq)}}$	$\mathrm{H}^{+}{ }_{\text {aq) }}$	$\left.\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}{ }^{-} \mathrm{aq}\right)$
initial	0.139 M	OM	OM
change	-x M	+ \times M	+x M
equilibrium	(0.139-x) M	x M	x M

Note that: $(0.139-x) M \approx 0.139 \mathrm{M}$ so
$K_{a}=\frac{\left[H^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{H} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\frac{(\mathrm{x})(\mathrm{x})}{(0.139-\mathrm{x})}=\frac{(\mathrm{x})(\mathrm{x})}{(0.139)}=\frac{\mathrm{x}^{2}}{(0.139)}=1.8 \times 10^{-5}$
$x^{2}=\left(1.8 \times 10^{-5}\right)(0.139)=2.502 \times 10^{-6}$
$x=1.58 \times 10^{-3} \mathbf{M}$
Then add the results together and use that value to find the pH .
$6.45 \times 10^{-3} \mathrm{M}+1.58 \times 10^{-3} \mathrm{M}=8.03 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left(8.03 \times 10^{-3}\right)=2.095$

